Wilson, WA. Spectrophotometric methods for the study of eukaryotic glycogen metabolism. J Vis Exp. 174: e63046, doi:10.3791/63046, 2021
Dittmer KE, Pradhan P, Tompkins QC, Brittingham A, Wilson WA. Cloning and characterization of glycogen branching and debranching enzymes from the parasitic protist Trichomonas vaginalis. Biochimie. 186:59-72, 2021
Linderblood KL, Wilson WA, Brittingham A. Glycogen accumulation in trichomonas is driven by the availability of extracellular glucose. J Parasitol. 107:514-518, 2021
Wilson WA, Pradhan P, Madhan N, Gist GC, Brittingham A. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family. Biochimie. 138:90-101, 2017
Smith RW, Brittingham A, and Wilson WA. Purification and identification of amylases released by the human pathogen Trichomonas vaginalis that are active towards glycogen. Mol Biochem Parasitol 210: 22-31, 2016
Huffman RD, Nawrocki LD, Wilson WA, and Brittingham A. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis. Exp Parasitol. 159:151-159, 2015
Brittingham A and Wilson WA. The Antimicrobial Effect of Boric Acid on Trichomonas vaginalis. Sex Transm Dis. 41:718-722., 2014
Dirkx M, Boyer MP, Pradhan P, Brittingham A, and Wilson WA. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis. BMC Biochem. 15:12. doi: 10.1186/1471-2091-15-12., 2014
Nielsen TJ, Pradhan P, Brittingham A, and Wilson WA. Glycogen accumulation and degradation by the trichomonads Trichomonas vaginalis and Trichomonas tenax. J Eukaryot Microbiol. 59:359-366., 2012
Pradhan P, Lundgren SW, Wilson WA, and Brittingham A. Glycogen storage and degradation during in vitro growth and differentiation of Giardia intestinalis. J Parasitol. 98:442-444., 2012
Baskaran S, Chikwana VM, Contreras CJ, Davis KD, Wilson WA, DePaoli-Roach AA, Roach PJ, and Hurley TD. Multiple glycogen-binding sites in eukaryotic glycogen synthase are required for high catalytic efficiency toward glycogen. J Biol Chem. 286:33999-34006., 2011
Wilson W.A., Henry M.K., Ewing G., Rehmann J., Canby C.A., Gray J.T., Finnerty E.P. Teach Learn Med 23:256-262. “A prematriculation intervention to improve the adjustment of students to medical school”, 2011
Wilson, W.A., Boyer, M.P., Davis, K.D., Burke, M., and Roach P.J. Can J Microbiol. 56, 408-420. “The subcellular localization of yeast glycogen synthase is dependent upon glycogen content”, 2010
Wilson, W.A., Roach P.J., Montero M., Baroja-Fernández E., Muñoz F.J., Eydallin G., Viale A.M., and Pozueta-Romero J. FEMS Microbiol Rev. 34, 952-985. “Regulation of glycogen metabolism in yeast and bacteria”, 2010
Wilson, W.A., Skurat, A.V., Probst, B., de Paoli-Roach, A.A., Roach, P.J., and Rutter, J.A., Proc. Natl. Acad. Sci. USA 102, 16596-16601. “Control of mammalian glycogen synthase by PAS kinase”. , 2005
Torija M.J., Novo M., Lemassu A., Wilson W, Roach P.J., Francois J., and Parrou J.L., FEBS Lett. 579, 3999-4004. “Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae”. , 2005
de Paula R.M., Wilson W.A., Roach P.J., Terenzi H.F. and Bertolini M.C., FEBS Lett. 579, 2208-2214. “Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis”. , 2005
Wilson, W.A., Wang, Z., and Roach, P.J., Biochem. Biophys. Res. Commun. 329, 161-167. “Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p” , 2005
de Paula R., Wilson, W.A., Terenzi, H.F., Roach, P.J., and Bertolini M.C., Arch. Biochem. Biophys. 435, 112–124. “GNN is a self-glucosylating protein involved in the initiation step of glycogen biosynthesis in Neurospora crassa”. , 2005
Wilson W.A., Hughes W.E., Tomamichel W. and Roach P.J., Biochem. Biophys. Res. Commun. 320, 416-423. “Increased glycogen storage in yeast results in less branched glycogen”. , 2004
Pederson, B.A., Wilson, W.A., and Roach, P.J., J. Biol. Chem. 279, 13764-13768. “Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae”. , 2004
Wilson, W.A., Wang, Z. and Roach, P.J., FEBS Lett. 515, 104-108. “Analysis of respiratory mutants reveals new aspects of the control of glycogen accumulation by the cyclin-dependent protein kinase Pho85p”. , 2002
Wilson, W.A., Wang, Z. and Roach, P.J., Mol. Cell Proteomics 1, 232-242. “Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level”. , 2002
Wang, Z., Wilson, W.A., Fujino, M.A. and Roach, P.J., FEBS Lett. 506, 277-280. “The yeast cyclins Pcl6p and Pcl7p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p”. , 2001
Wang, Z., Wilson, W.A., Fujino, M.A. and Roach, P.J., Mol. Cell Biol. 21, 5742-5752. “Control of autophagy and glycogen accumulation by Snf1p, the yeast homolog of the AMP-activated protein kinase”. , 2001
Pederson, B.A., Cheng, C., Wilson, W.A. and Roach, P.J., J. Biol. Chem 275, 27753-27761. , 2000
Wilson, W.A., Mahrenholz, A.M. and Roach, P.J., Mol. Cell Biol. 19, 7020-7030. “Substrate targeting of the yeast cyclin-dependent kinase Pho85p by the cyclin Pcl10p”., 1999